

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.




          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Why Typical?

There are many libaries out there that do some or most of what
Typical can do. Why should you pick Typical out of the pack?
Here’s a short list:


	Simplicity.


	Typical doesn’t require you to learn a new DSL - all you need to know is how to
use Python’s standard type-annotations.






	No Metaclasses.


	Typical doesn’t use metaclasses. We don’t infect your inheritance. When you wrap a
class with @typic.al, the class you get is the one you defined. That’s it.






	Flexibility.


	Typical works for you and doesn’t enforce arbitrarily strict rules.


	Because of an emphasis on simplicity and an aversion to inheritance-mangling,
you’re free to use this library as it works for your use-case.






	Performance.


	Typical is the fastest pure-Python (no Cython!) library out there. Just check out
the histograms below. It achieves this performance with finely-tuned
code-generation which allows Typical to localize namespaces and minimize branching
logic.






	Compliance.


	Typical is fully-compliant with
PEP 563 [https://www.python.org/dev/peps/pep-0563/]. The entire codebase uses the
annotations future, and this is the recommended mode of operation for all
consumers of this library,
unlike Pydantic [https://github.com/samuelcolvin/pydantic/issues/2678].









Benchmarks

The following benchmarks Typical’s three public APIs against on Python 3.9:


	Django Rest Framework (DRF) [https://www.django-rest-framework.org/]


	Marshmallow [https://marshmallow.readthedocs.io/en/stable/]


	Pydantic [https://pydantic-docs.helpmanual.io/]




As can be seen, Typical’s three APIs are consistently faster than all three libraries,
without the need for Cython as a build-dependency, making it far more portable than
other libraries on this list.


Validation Only


Typical is 25% faster, on average, than the nearest alternative when validating
data, and up to 8X faster when validating invalid data.




[image: _images/Validate_Invalid_Data.svg]Average time (in μs) for validation of invalid data in
a complex, nested
object.

[image: _images/Validate_Valid_Data.svg]Average time (in μs) for validation of valid data in a
complex, nested object.



Deserialization & Validation


Typical is comparable in performance to the nearest alternative when deserializing
valid data into your model, and up to 4x faster when deserializing invalid data.




[image: _images/Deserialize_Invalid_Data.svg]Average time (in μs) for attempted deserialization of
invalid data in a complex, nested
object.

[image: _images/Deserialize_Valid_Data.svg]Average time (in μs) for deserialization of valid data in a
complex, nested object.



Serialization & Validation


Typical is consistently 3-4x faster than the nearest alternative when serializing
data to JSON, and requires no additional configuration of your JSON library to
dump your models.




It should be noted that at the time of this writing, both
Pydantic and Marshmallow will passively allow or ignore
invalid data in certain cases by default. This was the
case with the test-case used for these benchmarks, which
can be found
here [https://github.com/seandstewart/typical/blob/master/benchmark/test_benchmarks.py].

[image: _images/Serialize_Invalid_Data.svg]Average time (in μs) for attempted serialization of
invalid data in a complex, nested
object.

[image: _images/Serialize_Valid_Data.svg]Average time (in μs) for serialization of valid data in
a complex, nested object.



Translate to an Arbitrary Class


Typical supports automated translation of one known,
custom class to an unknown, unlike other popular
libraries.




[image: _images/Translate_to_Arbitrary_Class.svg]Average time (in μs) for translation of a known class
to another unknown class a complex, nested
object.



Translate from an Arbitrary Class


Typical also supports translation from an arbitrary class
to a known class. Pydantic supports this feature with the
from_orm() method.




[image: _images/Translate_from_Arbitrary_Class.svg]Average time (in μs) for translation of a known class
to another unknown class a complex, nested
object.






          

      

      

    

  

    
      
          
            
  
Using Typical

Typical has three primary means of interaction - the Functional API, the Protocol
API, and the Object API


The Functional API

The Functional API largely mirrors the
Object API. It allows you to define your types and
pass them into set of high-level methods for largely the same effect
as binding directly to a class with @typic.klass.

!!! important

One of the benefits to the Object API is that the protocols
for  serialization, deserialization, and validation are generated 
at compile-time of the module and cached for later use. The 
Functional API has no compile-time optimization, so the protocols 
for your custom types will not be generated and cached until the 
first call. 

There are, however, other runtime benefits to the Functional API 
which we'll discuss below.

!!! note ""
    
    We provide a path for optimizing this initial performance hit
    by manually binding a protocol via `typic.protocol(...)`. See
    [SerDes](serdes.md) for more.






Defining Your Data

Anything goes!

No, really, for the most part, any custom type definition is valid for
the Functional API. The Functional API also knows to look out for
types defined with the Object API, no additional cost is incurred for
interacting with an object via either API, minus the cost of a few
additional function calls.

Let’s look at the models we defined in the Object API, but this time,
only use the Functional API for interaction.

!!! note

While we're using dataclasses to define our data, we could also
use vanilla classes, `TypedDict`, or `NamedTuple`. All we need for 
proper introspection is valid type annotations.





from __future__ import annotations

import enum
import dataclasses
from typing import Iterable, Optional


class Instrument(str, enum.Enum):
    """The only instruments a band really needs, duh."""
    
    GUIT = "guitar"
    BASS = "bass"
    PIAN = "piano"
    DRUM = "drums"


@dataclasses.dataclass
class Member:
    """A member in the band, man."""

    name: str
    instrument: Instrument
    id: Optional[int] = None


@dataclasses.dataclass
class Band:
    """It's the band, man."""

    name: str
    members: Iterable[Member]
    id: Optional[int] = None


@dataclasses.dataclass
class Song:
    """A sick tune - platinum fer sure."""

    name: str
    lyrics: str
    band: Band
    id: Optional[int] = None





!!! info “”

The important thing to take away here is that there's *virtually
no difference in LOC or declaration* from the standard lib and the
`@typic.klass` declaration. This is a cornerstone of Typical's
design: Work with *with* standard libary, not against
(or parallel) to it.







Interacting With Your Data


typic.schema(...)


A function which returns a JSON Schema definition of your class.

If the class was not bound using the Object API
or by calling typic.protocol(), the schema will be generated at
first call and then cached for later use.

??? example “Rendering a Schema”

```python
print(typic.schema(Member).tojson(indent=2))
#> {
#>   "type": "object",
#>   "title": "Member",
#>   "description": "A member in the band, man.",
#>   "properties": {
#>     "id": {
#>       "type": "integer"
#>     },
#>     "instrument": {
#>       "type": "string",
#>       "enum": [
#>         "guitar",
#>         "bass",
#>         "piano",
#>         "drums"
#>       ]
#>     },
#>     "name": {
#>       "type": "string"
#>     }
#>   },
#>   "additionalProperties": false,
#>   "required": [
#>     "instrument",
#>     "name"
#>   ],
#>   "definitions": {
#>
#>   }
#> }
```










typic.transmute(...)


Convert incoming data into an type or Annotation.

Incoming data may be:


	Arbitrary classes (e.g., an ORM Model or other class)


	JSON strings/bytes


	Python literals




The type may be any valid type annotation, standard Python type, or
custom user-defined class.

??? example “Transmute Data to Member”

```python
typic.transmute(Member, '{"name":"Ben","instrument":"piano"}')
#> Member(name='Ben', instrument=<Instrument.PIAN: 'piano'>, id=None)
```










typic.translate(...)


Convert an instance of any arbitrary class to another arbitrary class.

!!! note

This function is considerably less powerful than 
[transmute](#typictransmute). At a functional level, you're
encouraged to make use of that method rather than this. To 
understand *why* this function exists, take a look at its
definition in the [Object API](#translate).





??? example “Translate Member”

```python
class MemberORM:
    def __init__(self, name, instrument, id=None):
        self.name = name
        self.instrument = instrument
        self.id = id

    def __repr__(self):
        return f"<Member id={self.id} name={self.name} instrument={self.instrument}"


m = typic.transmute(Member, '{"name":"Robert","instrument":"guitar"}')
typic.translate(m, MemberORM)
#> <Member id=None name=Robert instrument=guitar
```










typic.validate(...)


Validate some data against your an annotation or model.

??? example “Member Data Validation”

```python

typic.validate(Member, {"name": "Paul", "instrument": "anything"})
#> Traceback (most recent call last):
#> 	...
#> typic.constraints.error.ConstraintValueError: Member.instrument: value <'anything'> fails constraints: (type=instrument, values=('guitar', 'bass', 'piano', 'drums', 'vocals'), nullable=False)
```





!!! fail “Gotcha”

Validators don't do any type conversion, so passing raw JSON into
the `typic.validate()` will fail. See [Validation](validation.md)










typic.primitive(...)


Convert any instance into its “primitive” equivalent.

This method effectively downgrades your model into a
JSON-serializable dict.

??? example “Member to Primitive”

```python
m = typic.transmute(Member, '{"name":"Darren","instrument":"drums"}')
print(typic.primitive(m))
#> {"name": "Darren", "instrument":"drums", "id": None}
```










typic.tojson(...)


Serialize your model instance to JSON

This method will pass on any keyword arguments to the  downstream
serializer.

!!! note “”

If [ujson](https://pypi.org/project/ujson/) is installed,
this method will default to that library.





??? example “Member to JSON”

```python
m = typic.transmute(Member, '{"name":"Darren","instrument":"drums"}')
print(typic.tojson(m, indent=2))
#> {
#>   "name": "Darren",
#>   "instrument": "drums",
#>   "id": null
#> }
```





!!! tip

It's possible to customize your serialized representation. See
[SerDes](serdes.md).










typic.decode(...)


Decode on-the-wire data into your Model.

This is useful if you plan to use a wire-format such as Avro, protocol buffers, etc.

To use custom decoders, pass in a callable which takes the input as its first
argument. All other keyword-arguments are passed on to the decoder function.

??? example “Decode Binary Data to Member”

```python

def decode(o: bytes, *, encoding: str = None):
    # Pretend we're using something other than a basic .decode()...
    return o.decode(encoding=encoding)

input = '{"name":"Ben","instrument":"piano","id":1}'.encode("utf-8-sig")
typic.decode(Member, input, decoder=decode, encoding="utf-8-sig")
#> Member(name='Ben', instrument=<Instrument.PIAN: 'piano'>, id=1)
```










typic.encode(...)


Encode your Model to a custom wire-format.

This is useful if you plan to use a wire-format such as Avro, protocol buffers, etc.

To use custom encoders, pass in a callable which takes the primitive representation of
your Model as the first argument. All other keyword-arguments are passed on to the
encoder function.

??? example “Encode a Member to Binary Data”

```python
import ujson

def encode(o: Any, *, encoding: str = None) -> bytes:
    # Pretend we're using something other than a basic dumps().encode()...
    return ujson.dumps(o).encode(encoding=encoding)

m = Member(name="Ben", instrument=Instrument.PIAN, id=1)
typic.encode(m, encoder=encode)
#> b'{"name":"Ben","instrument":"piano","id":1}'
```










typic.iterate(...)


!!! info “”

New in version 2.4





If compatible, iterate over your data. If the object is a mapping or class, you have
the option to iterate over (field, value) pairs, or simply over the values themselves.

??? example “Iterate a Member instance’s data”

```python

m = Member(name="Ben", instrument=Instrument.PIAN, id=1)

print([*typic.iterate(m)])
#> [('name', 'Ben'), ('instrument', <Instrument.PIAN: 'piano'>), ('id', 1)]

print(dict(typic.iterate(m)))
#> {'name': 'Ben', 'instrument': <Instrument.PIAN: 'piano'>, 'id': 1}

print([*typic.iterate(m, values=True)])
#> ['Ben', <Instrument.PIAN: 'piano'>, 1]
```












The Protocol API

As promised, Typical provides a path for optimizing your interactions with the
Functional API. This is done by calling the typic.protocol method. This method is a
public alias for our type resolver’s main entry-point. This means that the protocol
provided by this method is guaranteed to work exactly as the methods on a class bound by
the Object API. Additionally, all high-level functional calls are guaranteed to have the
same result as calls to the bound protocol.


Using Protocols

Binding a protocol gives us the best of both the Object and Functional
APIs. We get the benefit of the Object API’s optimistic caching and
brevity alongside the flexibility of the Functional API for
interacting with virtually any type or class directly.


typic.protocol(...)


Get a Serialization/Deserialization Protocol for the given type or
annotation.

??? example “Bind a Protocol to Member”

```python
protocol = typic.protocol(Member)
protocol.transmute(b'{"name":"Ben","instrument":"piano"}')
#> Member(name='Ben', instrument=<Instrument.PIAN: 'piano'>, id=None)
```





??? example “Bind a Protocol to an Annotation”

```python
from typing import Mapping

MemberMappingT = Mapping[str, Member]
protocol = typic.protocol(MemberMappingT)

mapping = protocol.transmute(b'{"vocalist":{"name":"Janis","instrument":"vocals"}}')

print(mapping)
#> {'vocalist': Member(name='Janis', instrument=<Instrument.VOCL: 'vocals'>, id=None)}

protocol.tojson(mapping)
#> '{"vocalist":{"name":"Janis","instrument":"vocals","id":null}}'

protocol.validate({"vocalist": {"name": "Al", "instrument": "xylophone"}})
#> Traceback (most recent call last):
#>   ...
#> typic.constraints.error.ConstraintValueError: Member.instrument: value <'xylophone'> fails constraints: (type=instrument, values=('guitar', 'bass', 'piano', 'drums', 'vocals'), nullable=False)
```








As shown in the example above, we can get a protocol for a class and
use that protocol to transmute inputs into the bound type.

We can also run validation, get a JSON schema, translate instances of
our class to another arbitrary class, get primitive representations of
instances, and dump instances to JSON.





The Object API

As touched on in Basics, you can interact with the Object
API in two ways: @typic.al and @typic.klass. What’s the
difference? Very little.

@typic.al will wrap any class, but works best when combined with
dataclasses [https://docs.python.org/3/library/dataclasses.html].
This is because of the declarative nature of defining fields and input
which dataclasses provide. To whit…

@typic.klass is a short-hand for the @typic.al/@dataclass
combination, which also provides a slightly more powerful API. For
brevity (the soul of wit), we’ll be using @typic.klass for the
examples in this section.


Defining your Objects

!!! tip

If you're unfamiliar with dataclasses, it's best to take some time
now and review the official 
[documentation](https://docs.python.org/3/library/dataclasses.html) 
and [PEP 557](https://www.python.org/dev/peps/pep-0557/).





As you’ve seen previously, defining your data is as simple as
following the now-familiar pattern across many libraries:

from __future__ import annotations

import enum
import typic
from typing import Iterable, Optional


class Instrument(str, enum.Enum):
    """The only instruments a band really needs, duh."""
    
    GUIT = "guitar"
    BASS = "bass"
    PIAN = "piano"
    DRUM = "drums"
    VOCL = "vocals"


@typic.klass
class Member:
    """A member in the band, man."""

    name: str
    instrument: Instrument
    id: Optional[int] = None


@typic.klass
class Band:
    """It's the band, man."""

    name: str
    members: Iterable[Member]
    id: Optional[int] = None


@typic.klass
class Song:
    """A sick tune - platinum fer sure."""

    name: str
    lyrics: str
    band: Band
    id: Optional[int] = None





The @typic.klass decorator is built on top of the
@dataclass.dataclass decorator, so any parameter which the
@dataclass.dataclass decorator
accepts [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass]
is also accepted by @typic.klass, plus a few more:

strict: bool = False


This enables “strict” validation of inputs. See
validation.




jsonschema: bool = True


Generate a JSON Schema definition for your object.




serde: SerdeFlags = None


Customize the serialization & deserialization of your object. See SerDes.




slots: bool = True


Automatically generate a class with slots for the attributes defined by your
annotations.




always: bool = True


Whether typical should coerce all values set to the class whenever they change, or
only once, on initialization of the class.






Interacting With Your Objects

As we’ve already demonstrated, Typical will guarantee the  data
passed into your models is parsed and transformed into the data you
defined.

First, let’s define the API. Below are the methods which Typical
will bind to your object when it is wrapped with @typic.al or
@typic.klass.


.schema()


A classmethod which returns a JSON Schema definition of your class.

This schema is computed and cached at compile-time so runtime calls
incur no additional compute time.

??? example “Rendering a Schema”

```python
print(Member.schema().tojson(indent=2))
#> {
#>   "type": "object",
#>   "title": "Member",
#>   "description": "A member in the band, man.",
#>   "properties": {
#>     "id": {
#>       "type": "integer"
#>     },
#>     "instrument": {
#>       "type": "string",
#>       "enum": [
#>         "guitar",
#>         "bass",
#>         "piano",
#>         "drums"
#>       ]
#>     },
#>     "name": {
#>       "type": "string"
#>     }
#>   },
#>   "additionalProperties": false,
#>   "required": [
#>     "instrument",
#>     "name"
#>   ],
#>   "definitions": {
#>
#>   }
#> }
```










.transmute(...)


Convert incoming data into your Model.

This supports:


	Arbitrary classes (e.g., an ORM Model or other class)


	JSON strings/bytes


	Python literals




??? example “Transmute Data to Member”

```python
Member.transmute('{"name":"Ben","instrument":"piano"}')
#> Member(name='Ben', instrument=<Instrument.PIAN: 'piano'>, id=None)
```










.translate(...)


Convert an instance of your model to another arbitrary class.

??? example “Translate Member”

```python
class MemberORM:
    def __init__(self, name, instrument, id=None):
        self.name = name
        self.instrument = instrument
        self.id = id

    def __repr__(self):
        return f"<Member id={self.id} name={self.name} instrument={self.instrument}"


m = Member.transmute('{"name":"Robert","instrument":"guitar"}')
m.translate(MemberORM)
#> <Member id=None name=Robert instrument=guitar
```





!!! note “”

It's possible to translate *to* another class, then transmute *back*. e.g.:  

``` python
m = Member.transmute('{"name":"Robert","instrument":"guitar"}')
orm = m.translate(MemberORM)
... ## (do stuff with orm, save it, etc.)
Member.transmute(orm)
#> Member(name='Robert', instrument=<Instrument.GUIT: 'guitar'>, id=1)
```










.validate(...)


Validate some data against your model.

??? example “Member Data Validation”

```python

Member.validate({"name": "Paul", "instrument": "anything"})
#> Traceback (most recent call last):
#> 	...
#> typic.constraints.error.ConstraintValueError: Member.instrument: value <'anything'> fails constraints: (type=instrument, values=('guitar', 'bass', 'piano', 'drums', 'vocals'), nullable=False)
```





!!! fail “Gotcha”

Validators don't do any type resolution, so passing raw JSON into 
the `.validate()` method will fail. See [Validation](validation.md)










.primitive()


Convert your model instance into its “primitive” equivalent.

This method effectively downgrades your model into a
JSON-serializable dict.

??? example “Member to Primitive”

```python
m = Member.transmute('{"name":"Darren","instrument":"drums"}')
print(m.primitive())
#> {"name": "Darren", "instrument":"drums", "id": None}
```










.tojson(...)


Serialize your model instance to JSON

This method will pass on any keyword arguments to the  downstream
serializer.

!!! note “”

If [ujson](https://pypi.org/project/ujson/) is installed,
this method will default to that library.





??? example “Member to JSON”

```python
m = Member.transmute('{"name":"Darren","instrument":"drums"}')
print(m.tojson(indent=2))
#> {
#>   "name": "Darren",
#>   "instrument": "drums",
#>   "id": null
#> }
```





!!! tip

It's possible to customize your serialized representation. See
[SerDes](serdes.md).










.decode(...)


Decode on-the-wire data into your Model.

This is useful if you plan to use a wire-format such as Avro, protocol buffers, etc.

To use custom decoders, pass in a callable which takes the input as its first
argument. All other keyword-arguments are passed on to the decoder function.

??? example “Decode Binary Data to Member”

```python

def decode(o: bytes, *, encoding: str = None):
    # Pretend we're using something other than a basic .decode()...
    return o.decode(encoding=encoding)

@typic.klass(serde=typic.flags(decoder=decode)
class Member:
    name: str
    instrument: Instrument
    id: int = None

input = '{"name":"Ben","instrument":"piano","id":1}'.encode("utf-8-sig")
Member.decode(input, encoding="utf-8-sig")
#> Member(name='Ben', instrument=<Instrument.PIAN: 'piano'>, id=1)
```










.encode(...)


Encode your Model to a custom wire-format.

This is useful if you plan to use a wire-format such as Avro, protocol buffers, etc.

To use custom encoders, pass in a callable which takes the Model instance as its first
argument. All other keyword-arguments are passed on to the encoder function.

??? example “Encode a Member to Binary Data”

```python

def encode(o: bytes, *, encoding: str = None):
    # Pretend we're using something other than a basic .encode()...
    return o.encode(encoding=encoding)

@typic.klass(serde=typic.flags(encoder=encode)
class Member:
    name: str
    instrument: Instrument
    id: int = None

m = Member(name="Ben", instrument="piano", id=1)
m.encode()
#> b'{"name":"Ben","instrument":"piano","id":1}'
```










.iterate(...)


!!! info “”

New in version 2.4





If compatible, iterate over your model instance’s data. This will default to yielding
(field, value) pairs. You can retrieve just values by passing values=True.

The default behavior is also attached as the __iter__() magic method for your
instance.

??? example “Iterate a Member instance’s data”

```python

m = Member(name="Ben", instrument=Instrument.PIAN, id=1)

print([*m.iterate()])
#> [('name', 'Ben'), ('instrument', <Instrument.PIAN: 'piano'>), ('id', 1)]

print(dict(m.iterate()))
#> {'name': 'Ben', 'instrument': <Instrument.PIAN: 'piano'>, 'id': 1}

print(dict(m))
#> {'name': 'Ben', 'instrument': <Instrument.PIAN: 'piano'>, 'id': 1}

print([*m.iterate(values=True)])
#> ['Ben', <Instrument.PIAN: 'piano'>, 1]
```












Which API Should I Use?

The Functional API is the least intrusive way to introduce Typical into your code-base.
It also has the benefit of greater flexibility w.r.t. which types can actually be
supported out-of-the-box.

The Protocol API provides a slight runtime performance boost and the benefit of
explicitly defining, customizing, and using your protocols, but also retains all the
flexibility of the Functional API. In practice, this is probably the best choice for
most situations.

Finally, if you prefer the pattern of containing ser/des logic within the model
definition itself, the Object API is there to fill that void.



Wrap Up and Next Steps

We’ve seen the supported high-level APIs and been given a variety of
avenues with which to interact with types in your Python application.
In the next few pages we’ll dive deeper on interacting with native
Python types, annotations from the typing library, and some extended
types provided by this library. We’ll also take a look at how we can
customize the shape of our data on on serialization (such as converting
field names to camelCase, etc.).





          

      

      

    

  

    
      
          
            
  
Experimental Features

The following page describes typical’s experimental features. These are not included in
official releases. In order to use these features, you must install from our git
repository on the branch the features are grouped under.

!!! info “”

Documentation will be updated as new features are added :thumbsup:








          

      

      

    

  

    
      
          
            
  
External Integrations


MyPy

Typical comes packaged with a simple plugin for mypy which will
greatly improve the static type-checking of your typic.klass
objects.

All that’s needed is to add typic.mypy as a plugin in your
mypy.ini like so. A simple mypy.ini may look like so:

[mypy]
follow_imports = silent
plugins = typic.mypy





For more information on MyPy plugins and configuration,
see their docs [https://mypy.readthedocs.io/en/stable/extending_mypy.html#extending-mypy-using-plugins].



Pycharm Plugin

A basic, functional plugin is currently available. It is not hosted on
the Marketplace quite yet, as it is missing a few key features, but it
provides auto-completion for your model’s parameters and type
introspection of the parameter’s annotations.

The repository can be found
here [https://github.com/seandstewart/typical-pycharm-plugin].





          

      

      

    

  

    
      
          
            
  
The Basics

Typical is built around a powerful, high-level functional API whose
purpose is to make working with annotations at runtime a breeze for
any developer.


Installation

Installation is as simple as pip install -U typical.

For an easy speedup at runtime, you can add ujson to the
installation with typical[json]. This results in a 30-50%
improvement when serializing your data with .tojson().



@typic.al()

The simplest way to get going with Typical is the @typic.al
decorator. This is the core entrypoint for all the magic
:crystal_ball:.


Wrapping Callables

import enum

import typic


class Decision(enum.IntEnum):
    YES = 1
    NO = 0
    MAYBE = -1
    

class Explanation(str, enum.Enum):
    YES = "Of course!"
    NO = "That's just the way it is."
    MAYBE = "¯\_(ツ)_/¯"
    

DECISION_MAP = dict(zip(Decision, Explanation))


@typic.al
def explain(decision: Decision) -> str:
    return DECISION_MAP[decision]
  

print(repr(explain(1.0)))
#> <Explanation.YES: 'Of course!'>





In the above example, Typical has taken care of your runtime
type-validation automatically. It also follows the classical Python
logic of duck-typing: float -> int -> Decision. But it will handle
more cases than that:

print(repr(explain(b"-1")))
#> <Explanation.MAYBE: '¯\\_(ツ)_/¯'>





Typical knows to look for common cases such as json and string/byte
literals and handles them gracefully.

That means you don’t have to remember to handle every single edge case
yourself. Just write your pure function and let Typical handle the
rest. This is incredibly useful for code which lives on the edges of
your application - such as a handler for an external caller or an
ingestor from a data-source.


Errors

But what about errors? Typical is built to provide transparency in
the event that a value cannot be transmuted into the expected
annotation. Taking the above example, if we pass a value not defined
by our Decsion enum:

explain(2)
#> ValueError: 2 is not a valid Decision





So instead of a random, non-descriptive KeyError, you get a clear,
predictable ValueError which can be easily passed on to the external
caller for handling.




Wrapping Classes

Typical works with classes too -

import typic


@typic.al
class Foo:
    bar: str
        
    def __init__(self, bar: str):
        self.bar = bar

print(repr(Foo(b"bar").bar))
#> 'bar'





But if you’re wrapping your class, you may as well go all the way with
that sexy dataclass-style…

import typic


@typic.klass
class Foo:
    bar: str






This is a dataclass under the hood, so anything you do with
dataclasses you can do with your @typic.klass, and much, much more.






          

      

      

    

  

    
      
          
            
  
The Ser/Des Protocol

The core of Typical’s protocol resolution logic is the Resolver. It provides the
central entry-point for our APIs, which allows us to maintain feature symmetry between
the Object API, the
Functional API, and the
The Protocol API. The Resolver is responsible for the
following work:


	Resolve the type or annotation to an operational runtime description.


	Generate a protocol for deserialization, translation, and validation of incoming data.


	Generate a protocol for the translation and serialization of outgoing data.




The result of this work is a single SerdesProtocol object which understands how to
interact with inputs and outputs which conform to the type annotation it’s been given.
The Protocol API exposes this object directly, the Object API binds this protocol to the
type definition, and the Functional API uses this protocol internally.

We won’t go over the API of the SerdesProtocol again, as it has already been described
in detail in Using Typical. Instead, we’re going to focus on how you can
customize the protocol to suite your needs.


Customizing Your Ser/Des Protocol

Typical provides a path for you to customize how your data is transmuted into your
custom classes, and how it is dumped back to its primitive form. It all starts with this
factory:


typic.flags

case: Optional[typic.common.Case] = None


Select the case-style for the input/output fields.




exclude: Optional[Iterable[str]] = None


Provide a set of fields which will be excluded from the output.




fields: Union[Tuple[str, ...], Mapping[str, str], None] = None


Ensure a set of fields are included in the output. If given a mapping, provide a
mapping to the output field name.




omit: Optional[Tuple[Union[Type, Any], ...]] = None


Provide a tuple of types or values which should be omitted on serialization.




signature_only: bool = False


Restrict the output of serialization to the class signature.




encoder: Callable[..., bytes] = None


Provide a callable which will encode the data to a custom wire format.




decoder: Callable[..., Any] = None


Provide a callable which will decode the data from a custom wire format.




The simplest method for customizing your protocol is via the Protocol API.

??? example “Customizing a dataclass Protocol”

```python
import dataclasses
import json

import typic


def encode(o):
    return json.dumps(o).encode("utf-8-sig")


def decode(o):
    return json.loads(o.decode("utf-8-sig"))


@dataclasses.dataclass
class Foo:
    bar: str
    exclude: str = None


foo = Foo("bar", "exc")
flags = typic.flags(fields={"bar": "Bar"}, exclude=("exclude",), decoder=decode, encoder=encode)
proto = typic.protocol(Foo, flags=flags)

print(proto.primitive(foo))
#> {'Bar': 'bar'}

print(proto.tojson(foo))
#> '{"Bar":"bar"}'

print(proto.encode(foo))
#> b'\xef\xbb\xbf{"Bar": "bar"}'

print(proto.decode(b'\xef\xbb\xbf{"Bar": "bar"}'))
#> Foo(bar='bar', exclude=None)
```





You can also assign the __serde_flags__ attribute on any class.

??? example “Pinned Customization on Classes”

```python
class Foo:
    __serde_flags__ = typic.flags(fields=("bar", "prop"))
    prop: int
    bar: str = ""

    @property
    def prop(self) -> int:
        return 0

proto = typic.protocol(Foo)
proto.primitive(Foo())
#> {'prop': 0, 'bar': ''}
```





Or even pass in pre-defined flags when creating a protocol for an arbitrary annotation.

??? example “Pre-defined Flags for Arbitrary Protocols”

```python
import typic
from typing import Mapping

flags = typic.flags(case=typic.Case.CAMEL)
mapping_proto = typic.protocol(Mapping, flags=flags)

print(mapping_proto.tojson({"foo_bar": 1}))
#> '{"fooBar":1}'
```










          

      

      

    

  

    
      
          
            
  
Automated Settings Management

A great use-case for type-coercion is the automatic resolution of
environment variables. Typical has your back with the typic.settings
decorator:


typic.environ


A proxy for os.environ which facilitates geting/setting of strongly-typed data.





typic.environ.getenv(...)


Fetch the value assigned to the given variable.





Parameters

var: str


The environment variable to lookup.




t: Type = Any


An optional type to coerce the value at var.




ci: bool = True


Whether the environment variable should be considered case-insensitive.







typic.environ.setenv(...)


Set a value at the target variable.





Parameters

var: str


The environment variable to set.




value: Any


The value to set at the given variable.







typic.register(...)


Registers a handler for resolving variables with type t.





Parameters

t: Type


The target type to create and register a handler for.




name: str = None


An optional name to register the handler with.







Usage

??? example “Fetching & Setting Values”

import typic

typic.environ.setenv("USE_FOO", True)

use_foo = typic.environ.getenv("use_foo", t=bool)
print(use_foo)
#> True





??? example “Using a Type Handler”

typic.environ ships with handlers for all native types and typical’s own extended
types.

import typic

typic.environ.setenv("USE_FOO", True)

print(typic.environ.bool("use_foo"))
#> True

print(typic.environ.str("use_foo"))
#> true

print(typic.environ.int("use_foo"))
#> 1

typic.environ.setenv("DATABASE_URL", "postgres://localhost:5432/db")

dsn = typic.environ.DSN("DATABASE_URL")

print(dsn)
#> postgres://localhost:5432/db

print(dsn.info)
#> DSNInfo(driver='postgres', username='', password=, host='localhost', port=5432, name='/db', qs='', is_ip=False)





??? example “Register a Custom Handler”

import dataclasses

import typic


@dataclasses.dataclass
class Foo:
    bar: str = None


typic.register(Foo)
typic.environ.setenv("THIS_FOO", Foo())

print(typic.environ.Foo("THIS_FOO"))
#> Foo(bar=None)








@typic.settings(...)


Create a typed class which sets its defaults from env vars.

The resolution order of values is default(s) -> env value(s) -> passed value(s).

Settings instances are indistinguishable from other typical dataclasses at run-time
and are frozen by default. If you really want your settings to be mutable, you may
pass in frozen=False manually.





Parameters

prefix: str = ‘’


A string which all the target variables with begin with, i.e., ‘APP_’




case_sensitive: bool = False


Whether to respect the case of environment variables.




frozen: bool = True


Whether the resulting dataclass should be immutable.




aliases: Mapping = None


A mapping of full-name aliases for the defined attributes.
{’other_foo’: ‘foo’} will locate the env var OTHER_FOO and place it
on the Bar.foo attribute.




!!! info “”

Environment Variables for settings classes are resolved via `typic.environ` getters,
which are set as default factories.

If your class has defaults assigned, we will not try to resolve via the environment.

If you pass in a value for a given attribute, that will override any default.





??? example “Using Settings”

```python
import os
import typic

os.environ['FOO'] = "1"

@typic.settings
class Bar:
    foo: int


print(Bar())
#> Bar(foo=1)

print(Bar("3"))
#> Bar(foo=3)

bar = Bar()
bar.foo = 2
#> Traceback (most recent call last):
#>   ...
#> dataclasses.FrozenInstanceError: cannot assign to field 'foo'
```





!!! warning “”

When the final dataclass is generated, all matching environment
variables will be resolved as default values for the matching
attribute (or a default factory in the case of a mutable default).

When the class itself is initialized, values passed in will
override variables provided in your environment.










          

      

      

    

  

    
      
          
            
  
Working with Types

Typical is Python’s Typing Toolkit. Below we’ll walk you through what that means.


Postponed Annotations

Typical natively supports type annotations defined with forward references for all
interfaces. This support is automatic and requires no additional configuration:

from __future__ import annotations

import typic


@typic.klass
class A:
    b: B


@typic.klass
class B:
    c: int


print(A.transmute({"b": {"c": "1"}}))
#> A(b=B(c=1))





!!! warning “Gotcha!”

The type you reference *must* be available within the global namespace of the 
enclosing object. Otherwise, the reference will be treated as an anonymous type
and not be proactively transmuted.






Self-referencing (Recursive) Types

As a side-effect of our support for postponed annotations, Typical also supports
self-referential (recursive) types:

from __future__ import annotations

import typic
import dataclasses
from typing import Optional


@dataclasses.dataclass
class Node:
    pos: int
    child: Optional[Node] = None


n = typic.transmute(Node, {"pos": 0, "child": {"pos": 1}})
print(n)
#> Node(pos=0, child=Node(pos=1, child=None))

print(typic.tojson(n))
#> {"pos":0,"child":{"pos":1,"child":null}}







Circular Dependencies

As another side-effect of postponed annotation support, Typical also handles types which
have circular dependencies upon each other:

from __future__ import annotations

import typic
from typing import Optional


@typic.klass
class A:
    b: Optional[B] = None


@typic.klass
class B:
    a: Optional[A] = None


a = A.transmute({"b": {"a": {}}})
print(a)
#> A(b=B(a=A(b=None)))

print(a.tojson())
#> {"b":{"a":{"b":null}}}





!!! note “About those __future__ imports”

[PEP 563](https://www.python.org/dev/peps/pep-0563) introduced a new methodology for
the analysis of annotations at runtime which treats all annotations as strings 
until the runtime types are explicitly fetched. This greatly simplifies the 
development overhead for type resolution and also removes the need for wrapping
annotations referencing potentially undefined or recursive types in quotes `""`. 

*You're __highly encouraged__ to adopt this import in your Python3.7-8 code. Starting 
with __Python 3.9__, it is the default behavior.*








The Standard Library

Typical is built upon the standard typing library. Virtually any valid static type may
be reflected and managed by Typical. Just follow the rules defined by
PEP 484 [https://www.python.org/dev/peps/pep-0484/] and you’re good to go!

Beyond classes, standard types, and the annotation syntax provided by the typing
library, Typical also natively supports extended types defined in the following standard
modules & bases:


	datetime [https://docs.python.org/3.9/library/datetime.html]

!!! note “”

  By nature of how we convert string literals to date objects, we
  also natively support date objects provided by
  [pendulum](https://pendulum.eustace.io).







	decimal [https://docs.python.org/3/library/decimal.html]


	ipaddress [https://docs.python.org/3/library/ipaddress.html]


	defaultdict [https://docs.python.org/3/library/collections.html#collections.defaultdict]


	typing.NamedTuple [https://docs.python.org/3/library/typing.html#typing.NamedTuple]


	typing.TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict]


	typing.NewType [https://docs.python.org/3/library/typing.html#typing.NewType]


	typing.DefaultDict [https://docs.python.org/3/library/typing.html?highlight=defaultdict#typing.DefaultDict]

!!! note “”

  We will use the subscripted value type to attempt to determine a factory
  for your defaultdict. If one can't be determined, or the value type
  requires additional parameters upon initialization, the default value
  will be `None`.









Additionally, we maintain mapping of typing/collection
ABCs to actionable runtime type:

| ABC                    | Builtin |
|:———————–|:——–|
| typing.Mapping         | dict    |
| typing.MutableMapping  | dict    |
| typing.Collection      | list    |
| typing.Iterable        | list    |
| typing.Sequence        | list    |
| typing.MutableSequence | list    |
| typing.AbstractSet     | set     |
| typing.MutableSet      | set     |
| typing.Hashable        | str     |



Literal Types

!!! info “”

New in version 2.1





typical supports validation of Literal types, as described in
PEP 586 [https://www.python.org/dev/peps/pep-0586/].

Literals are a bit like Unions and Enums had a love child, meaning that they may be
subscripted with a series of inputs that are considered “valid”. Unlike Unions and like
Enums, Literals declare specific primitive values (i.e., builtins). Valid annotations
include:

from typic.compat import Literal

Literal[1]
Literal[1, None]
Literal[1, "foo", b'bar']
...





An interesting side-effect of their similarity is that a Literal of the form
Literal[..., None] is equivalent to Optional[Literal[...]]

For an exhaustive explanation, see the PEP linked above.

For typical, this means we can resolve a deserializer with behavior similar to Enums and
Unions.

import typic
from typic.compat import Literal

Literally1 = Literal[1]

print(typic.transmute(Literally1, b"1"))
#> 1

LessThan4 = Literal[0, 1, 2, 3]
print(typic.transmute(LessThan4, b"1"))
#> 1





Literals provide a means of runtime validation as well:

typic.transmute(LessThan4, 5)
#> Traceback (most recent call last):
#>   ...
#> typic.constraints.error.ConstraintValueError: Given value <5> fails constraints: (type=Literal, values=(0, 1, 2, 3), nullable=False)





If the Literal has values of multiple types, we treat it as a Union type and cannot
proactively deserialize the input, but we can still validate against the constraint:

SuperImportantValues = Literal[1, "foo"]

typic.transmute(SuperImportantValues, b"foo")
#> Traceback (most recent call last):
#>   ...
#> typic.constraints.error.ConstraintValueError: Given value <b'foo'> fails constraints: (type=Literal, values=(1, 'foo'), nullable=False)







Unions (Polymorphic Types)

!!! warning “”

:dragon: Here be dragons :dragon: 






Tagged Unions

!!! info “”

New in version 2.1





typical supports Tagged Unions, as described in
Mypy’s documentation [https://mypy.readthedocs.io/en/stable/literal_types.html#tagged-unions].

In a strongly-typed container, such as a TypedDict or NamedTuple, or a more standard
class, this means if a field is annotated with a constant value, it can be considered a
“tag” or “discriminator” when analyzed within a Union.

typical currently supports annotating your tag using ClassVars or Literals.

Expanding on our example from the API Docs:

from __future__ import annotations

import enum
import dataclasses
from typing import ClassVar, Iterable, Optional, Union

import typic


class Instrument(str, enum.Enum):
    """The only instruments a band really needs, duh."""
    
    GUIT = "guitar"
    BASS = "bass"
    PIAN = "piano"
    DRUM = "drums"


@dataclasses.dataclass
class BaseMember:
    """A member in the band, man."""

    instrument: ClassVar[Instrument]
    name: str
    id: Optional[int] = None
    
    @property
    def _catch_phrase(self) -> str:
        return "played"

    def play(self) -> str:
        return f"{self.name} {self._catch_phrase} the {self.instrument.value}!"


class Drummer(BaseMember):
    """It all about those sick beats."""
    instrument = Instrument.DRUM


class BassPlayer(BaseMember):
    """Slappin out that rhythm."""
    instrument = Instrument.BASS
    
    @property
    def _catch_phrase(self) -> str:
        return "slapped"


class GuitarPlayer(BaseMember):
    """Shred it."""
    instrument = Instrument.GUIT


class PianoPlayer(BaseMember):
    """Let's face it, I'm the true genius."""
    instrument = Instrument.PIAN


BandMemberT = Union[Drummer, BassPlayer, GuitarPlayer, PianoPlayer]



@dataclasses.dataclass
class Band:
    """It's the band, man."""

    name: str
    members: Iterable[BandMemberT]
    id: Optional[int] = None


@dataclasses.dataclass
class Song:
    """A sick tune - platinum fer sure."""

    name: str
    lyrics: str
    band: Band
    id: Optional[int] = None





Now that we’re able to use polymorphism for our Band member types, we can take advantage
of those sick OOP patterns we all love, such as defining a base interface and
overloading methods on child classes. And with typical, you get your deserialization for
free!

member_proto = typic.protocol(BandMemberT)

member = member_proto.transmute({"instrument": "bass", "name": "Robert"})
print(member.play())
#> Robert slapped the bass!





???+ warning “Gotcha!”

When combining postponed annotations with polymorphic types, you're *highly 
encouraged* to add `from __future__ import annotations` to the top of your module. 

If you don't like that pattern, then you should wrap the **entire annotation** in 
quotes, rather than the single recursive or circular type in the Union.

**Preferred**:
```python
from __future__ import annotations

from typing import Union

import typic
from typic.compat import Literal

@typic.klass
class ABlah:
    key: Literal[3]
    field: Union[AFoo, ABar, ABlah, None]


@typic.klass
class AFoo:
    key: Literal[1]
    field: str


@typic.klass
class ABar:
    key: Literal[2]
    field: bytes
```

**OK**:
```python    
from typing import Union

import typic
from typic.compat import Literal

@typic.klass
class ABlah:
    key: Literal[3]
    field: "Union[AFoo, ABar, ABlah, None]"


@typic.klass
class AFoo:
    key: Literal[1]
    field: str


@typic.klass
class ABar:
    key: Literal[2]
    field: bytes
```

**WRONG**:
```python    
from typing import Union

import typic
from typic.compat import Literal

@typic.klass
class ABlah:
    key: Literal[3]
    field: Union[AFoo, ABar, "ABlah", None]


@typic.klass
class AFoo:
    key: Literal[1]
    field: str


@typic.klass
class ABar:
    key: Literal[2]
    field: bytes
```







Generic Unions

While you’re highly encouraged to make use of Tagged Unions for your
polymorphic types, typical can generate a deserializer for generic unions as well. This
is intended for use when it’s simply not possible to define a discriminator for your
union.

!!! info “”

New in version 2.6





!!! warning “”

Tagged Union deserialization is O(1) where N is the number of target types. Generic
Unions are O(N). Keep this in mind when defining your types - you may be better-served
by re-working your data model.





When defining your Generic Union, you’re encouraged to order your types from most
specific to least. As a part of the implementation, we treat the possible types as
FIFO queue, taking a type from the top of the stack and attempting deserialization. If
all attempt at deserialization fail, we raise a ValueError.

??? example “Working with Generic Unions”

**Wrong:**

```python
from __future__ import annotations

from typing import Union

import typic


# `str` should never be first! Everything can be a string...
proto = typic.protocol(Union[str, int])
print(type(proto.transmute("1")))
#> <class 'str'>

```

**Right:**

```python
from __future__ import annotations

from typing import Union

import typic

proto = typic.protocol(Union[int, str])
print(type(proto.transmute("1")))
#> <class 'int'>
```





!!! error “Gotcha!”

In static typing, `Union[str, int]` and `Union[int, str]` are identical. For Python,
this means they have the same hash value, which in turn breaks typical's caching 
mechanism. *Tread carefully when defining your types and always ensure you define 
your union from* most *to* least *strict.*








Constraining Builtin Types

Typical provides a path for defining “constrained” types based upon
Python builtins. This gives you a means to express limited types in a
declarative manner. There is some overlap between constrained types
and JSON Schema - this is intentional. However, Typical’s
constraints are built with Python types in mind, so there are small,
but important differences between the two implementations.

!!! note

It should be noted that Typical's constraint syntax is the means 
by which we generate JSON Schema definitions.





The public interface for constraining types is the @typic.constrained decorator.
Specific keywords are defined by the type which is being constrained.


The Constraints API

It all starts with a single decorator:


@typic.constrained(...)


Create a “constrained” subclass of a Python builtin type.

!!! fail “Prohibited”

Attempting to constrain a type not explicitly listed below will 
result in a `TypeError`.





??? example “An ID Class”

```python
import typic

@typic.constrained(ge=1)
class ID(int):
    """An integer which must be >= 1"""

ID(1)
#> 1

ID(0)
#> Traceback (most recent call last):
#>  ...
#> typic.constraints.error.ConstraintValueError: Given value <0> fails constraints: (type=int, nullable=False, coerce=False, ge=1)
```










Numbers

The following builtin types are currently supported by the numeric
constraints system:


	int


	float


	decimal.Decimal




Number constraints all have share these parameters:

gt: Optional[Number] = None


The value inputs must be greater-than.




ge: Optional[Number] = None


The value inputs must be greater-than-or-equal-to.




lt: Optional[Number] = None


The value inputs must be less-than.




le: Optional[Number] = None


The value inputs must be less-than-or-equal-to.




mul: Optional[Number] = None


The value inputs must be a multiple-of.




Additionally, you may define the following constraints for subclasses
of Decimal:

max_digits: Optional[int] = None


The maximum allowed digits for the input.




decimal_places: Optional[int] = None


The maximum allowed decimal places for the input.




!!! fail “Gotcha”

Numbers may *not* define conflicting constraints (e.g., `>` & `>=`).
Rather than deal with this silently, we will raise a 
[ConstraintSyntaxError](#errors).







Text

The following builtins are currently supported by the textual
constraints system:


	str


	bytes




Text constraints all share the following parameters:

strip_whitespace: Optional[bool] = None


Whether to strip any whitespace from the input.

!!! warning “Callers Beware”

This will result in mutation of the provided input.








min_length: Optional[int] = None


The minimun length this input text must be.




max_length: Optional[int] = None


The maximum length this input text may be.




curtail_length: Optional[int] = None


Whether to cut off characters after the defined length.

!!! warning “Callers Beware”

This will result in mutation of the provided input.








regex: Optional[Pattern[Text]] = None


A regex pattern which the input must match.






Arrays

The following builtins are currently supported but the array
constraints system:


	list


	tuple


	set


	frozenset


	collections.deque




Array constraints share the following parameters:

min_items: Optional[int] = None


The minimum number of items which must be present in the array.




max_items: Optional[int] = None


The maximum number of items which may be present in the array.




unique: Optional[bool] = None


Whether this array should only have unique items.

!!! warning “Callers Beware”

This will result in mutation of the provided input.








values: Optional["ConstraintsT"] = None


The constraints for which the items in the array must adhere.

This can be a single type-constraint, or a tuple of multiple
constraints.




!!! note

`set` & `frozenset` constraints default `unique=True`. This makes
sense, as they are unique by nature.







Mappings

The mapping constraint system currently only supports dict.

min_items: Optional[int] = None


The minimum number of items which must be present in this mapping.




max_items: Optional[int] = None


The maximum number of items which may be present in this mapping.




required_keys: FrozenSet[str] = dataclasses.field(default_factory=frozenset)


A frozenset of keys which must be present in the mapping.




key_pattern: Optional[Pattern] = None


A regex pattern for which all keys must match.




items: Optional[FrozenDict[Hashable, "ConstraintsT"]] = None


A mapping of constraints associated to specific keys.




patterns: Optional[FrozenDict[Pattern, "ConstraintsT"]] = None


A mapping of constraints associated to any key which match the regex
pattern.




values: Optional["ConstraintsT"] = None


Whether values not defined as required are allowed

May be a boolean, or more constraints which are applied to all
additional values.




keys: Optional["ConstraintsT"] = None


Constraints to apply to any additional keys not explicitly defined.




key_dependencies: Optional[FrozenDict[str, KeyDependency]] = None


A mapping of keys and their dependent restrictions if they are
present.

A ‘key dependency’ defines constraints which are applied only if a
key is present.

This can be either a tuple of dependent keys, or an additional
mapping constraints, which is treated as a sub-schema to the parent
constraints.




total: Optional[bool] = False


Whether to consider this schema as the ‘total’ representation

!!! fail “Beware”

If a mapping is `total=True`, no additional keys/values are
allowed and cannot be defined.

Conversely, if a mapping is `total=False`, `required_keys` cannot
not be defined.








!!! tip “”

The Constraints system is based largely upon JSON Schema, and 
those familiar with the specification have likely already noted 
the many similarities.

This system has been customized for the Python-specific 
type topology, so there are some subtle, but important, 
differences between the two.

In the case of mapping constraints, you're encouraged to
familiarize yourself with the
[JSON Schema: Object](https://json-schema.org/understanding-json-schema/reference/object.html)
documentation, as the more advanced (and unwieldy) pieces such as 
key-dependencies are derived from there.

*In general, if your mapping constraints get too complex, you're 
encouraged to make use of legitimate classes or `TypedDict`.*







Errors

The Constraints API has defined the following errors:

ConstraintValueError(ValueError)


A generic error indicating a value violates a constraint.

The error message will provide the value provided and the
constraints which were violated.




ConstraintSyntaxError(SyntaxError)


A generic error indicating an improperly defined constraint.

This will be raised at compile-time, not as a surprise during
run-time.








Extended Types

Typical also ships with a library of extended types to make your
daily work a breeze:



Networking

All networking types are subclasses of str, so are natively
JSON-serializable. They provide an info attribute which itself
provides accessors to useful information regarding the specific type.

All network addresses are immutable and no attributes may be set or
removed.


.info Property

Unless otherwise specified, the info attribute will contain an
instance of NetAddrInfo with the following attributes, propertes,
and methods:

scheme: str


The net-address scheme, e.g., http, tcp, ssh, etc.




auth: str


The user auth info.




password: SecretStr


The user’s password.




host: str


The host for this address, e.g. 0.0.0.0, foobar.net.




port: int


The port for this net-address




path: str


The URI path.




qs: str


The query-string, unparsed, e.g. ?id=1&name=foo




params: str


The url parameters, unparsed, e.g. id=2;foo=bar




fragment: str


The uri fragment, e.g. #some-page-anchor




base: str


The ‘base’ of the URL, including scheme, auth, and host.




relative: str


The ‘relative’ portion of the URL: path, params, query, and fragment.




address: str


The fully-qualified network address.

If this instance was generated from a string, it will match.




address_encoded: str


The fully-qualified network address, encoded.




query: Mapping[str, List[str]]:


The query-string, parsed into a mapping of key -> [values, …].




parameters: Mapping[str, List[str]]:


The params, parsed into a mapping of key -> [values, …].




is_default_port: bool


Whether address is using the default port assigned to the given scheme.




is_relative: bool


Whether address is ‘relative’ (i.e., whether a scheme is provided).




is_absolute: bool


The opposite of is_relative.




is_private: bool


Whether or not the URL is using a ‘private’ host, i.e., ‘localhost’.




is_internal: bool


Whether the host provided is an ‘internal’ host.

This may or may not be private, hence the distinction.






NetworkAddress(str)


This is the base class for all Networking types. It’s fully
functional and may be used on its own if desired, but the inheritors
defined below provide their own advanced features and are much more
useful at runtime.

??? example “Working with a NetworkAddress”

```python

import typic

net_addr = typic.NetworkAddress("http://foo.bar/bazz;foo=bar?buzz=1#loc")
print(net_addr)
#> 'http://foo.bar/bazz;foo=bar?buzz=1#loc'

print(net_addr.info.is_absolute)
#> True

print(net_addr.info.host)
#> 'foo.bar'

print(net_addr.info.scheme)
#> 'http'

print(net_addr.info.address_encoded)
#> 'http%3A//foo.bar/bazz%3Bfoo%3Dbar%3Fbuzz%3D1%23loc'

print(net_addr.info.query)
#> mappingproxy({'buzz': ['1']})

print(net_addr.info.parameters)
#> mappingproxy({'foo': ['bar']})

print(net_addr.info.fragment)
#> 'loc'

domain = typic.NetworkAddress("foo.bar")
print(domain)
#> 'foo.bar'

print(domain.info.is_relative)
#> True

print(domain.info.host)
#> 'foo.bar'

print(net_addr)
#> 'http://foo.bar/bazz;foo=bar?buzz=1#loc'

print(typic.tojson([net_addr]))
#> '["http://foo.bar/bazz;foo=bar?buzz=1#loc"]'
```










URL(NetworkAddress)


A URL is a Network Address which may be “joined” with additional
paths, similar to the implementation in
pathlib [https://docs.python.org/3/library/pathlib.html]

??? example “Working with URLs”

```python
import typic

url = typic.URL("http://foo.bar/bazz")
print(url)
#> 'http://foo.bar/bazz'

more = url / 'foo' / 'bar'
print(more)
#> 'http://foo.bar/bazz/foo/bar'

print(typic.URL(url.info.base) / 'other')
#> 'http://foo.bar/other'
```










AbsoluteURL(URL)


An AbsoluteURL is a URL which must have a scheme and host.

??? example “Working with AbsoluteURLs”

```python
import typic

pep484 = typic.AbsoluteURL("https://www.python.org/dev/peps/pep-0484/")
print(pep484)
#> https://www.python.org/dev/peps/pep-0484/

typic.AbsoluteURL("/dev/peps/pep-0484/")
#> Traceback (most recent call last):
#>   ...
#> typic.types.url.AbsoluteURLValueError: <'/foo'> is not an absolute URL.
```










RelativeURL(URL)


A RelativeURL is a URL which must not have a scheme and
host.

??? example “Working with RelativeURLs”

```python
import typic

pep484 = typic.RelativeURL("/dev/peps/pep-0484/")
print(pep484)
#> /dev/peps/pep-0484/

typic.RelativeURL("https://www.python.org/dev/peps/pep-0484/")
#> Traceback (most recent call last):
#>   ...
#> typic.types.url.RelativeURLValueError: <'https://www.python.org/dev/peps/pep-0484/'> is not a relative URL.
```










HostName(URL)


A HostName is a URL which must only have a host.

??? example “Working with RelativeURLs”

```python
import typic

python = typic.HostName("www.python.org")
print(python)
#> www.python.org

typic.HostName("https://www.python.org/dev/peps/pep-0484/")
#> Traceback (most recent call last):
#>   ...
#> typic.types.url.HostNameValueError: <'https://www.python.org/dev/peps/pep-0484/'> is not a hostname.
```








!!! note

The following network address types have their own `info` 
implementations and validation.







DSN(NetworkAddress)


A D(ata)S(ource)N(ame) string. This is essentially a URL, but the
api is already well-defined with different attributes than a
standard URL.

??? example “Working with DSNs”

```python

import typic
dsn = typic.DSN("postgresql://user:secret@localhost:5432/mydb")
print(dsn)
#> 'postgresql://user:secret@localhost:5432/mydb'
print(dsn.info.host)
#> 'localhost'
print(dsn.info.is_private)
#> True
print(dsn.info.is_default_port)
#> True
print(dsn.info.username)
#> 'user'
print(dsn.info.password)   # This has been converted to a secret :)
#> ******
print(dsn.info.name)
#> '/mydb'
print(dsn.info.driver)
#> 'postgresql'
print(typic.tojson([dsn]))
#> '["postgresql://user:secret@localhost:5432/mydb"]'
```










Email(NetworkAddress)


We all know what an Email is!

??? example “Working with Emails”

```python
import typic

email = typic.Email("Foo Bar <foo.bar@foobar.net>")
print(email)
#> Foo Bar <foo.bar@foobar.net>
print(email.info.host)
#> foobar.net
email.info.is_named
#> True
typic.tojson([email])
#> '["Foo Bar <foo.bar@foobar.net>"]'
```











Paths

Typical provides two subclasses of
pathlib.Path [https://docs.python.org/3/library/pathlib.html]:


	FilePath


	A Path object which must point to a file.






	DirectoryPath


	A Path object which must point ot a directory.








!!! important “”

Due to the implementation of Paths, these subclasses require that 
a path exists in order for the validation to be successful.







Miscellaneous


FrozenDict


A hashable, immutable dictionary. This inherits directly from
Python’s dict builtin and is natively JSON serializable.

??? example “Working with FrozenDict”

```python

import typic

fdict = typic.FrozenDict({"foo": ["bar"]})
typic.ishashable(fdict)
#> True

fdict["foo"]
#> ('bar',)

new = fdict.mutate({"bazz": "buzz"}, bazz="blah")
print(new)
#> {'foo': ('bar',), 'bazz': 'blah'}

fdict.update(foo=["car"])
#> Traceback (most recent call last):
#> ...
#> TypeError: attempting to mutate immutable type 'FrozenDict'

del fdict["foo"]
#> Traceback (most recent call last):
#> ...
#> TypeError: attempting to mutate immutable type 'FrozenDict'

fdict.pop("foo")
#> Traceback (most recent call last):
#> ...
#> TypeError: attempting to mutate immutable type 'FrozenDict'

fdict.clear()
#> Traceback (most recent call last):
#> ...
#> TypeError: attempting to mutate immutable type 'FrozenDict'
```










SecretStr & SecretBytes


A subclass of str (or bytes, respectively) which masks its value
on repr. Secrets can be accessed with the .value attribute.

??? example “Working with Secrets”

```python
import typic

mysecret = typic.SecretStr("The Ring is in Frodo's pocket.")
print(mysecret)
#> ******************************

print(mysecret.secret)
#> The Ring is in Frodo's pocket.

print(f"{mysecret}")
#> '******************************'

typic.tojson([mysecret])
#> '["The Ring is in Frodo\\'s pocket."]'
```













          

      

      

    

  

    
      
          
            
  
Validation, Parsing, and Deserialization

Typical’s default mode is that of a deserializer & serializer. The
API also provides a means to manually validate inputs against your
defined type, but it should be noted that Typical approaches
validation as a means or side-effect of deserialization.

You can, however, change the default mode.


Strict Mode

strict mode turns Typical into a run-time enforcer, not just
coercer. What does this mean? Simply put, if the input does not meet
the constraints of the provided type, an error will be raised. There
are three different levels of strict mode enforcement:


	Global


	Namespaced


	Annotated





Global Strict Mode

Global strict mode is the easiest to just turn on, but has its
drawbacks.


typic.strict_mode()


Turn on global strict mode.

All resolved annotations will validate their inputs against the generated
constraints. In some cases, coercion may still be used as the method for
validation. Additionally, post-validation coercion will occur for
user-defined classes if needed.

!!! warning

Global state is messy, but this is provided for convenience. Care must
be taken when manipulating global state in this way. If you intend to
turn on global ``strict`` mode, it should be done once, at the start
of the application runtime, before all annotations have been resolved.

You cannot toggle ``strict`` mode off once it is enabled during the runtime
of an application. This is intentional, to limit the potential for hazy or
unclear state.

If you find yourself in a situation where you need `strict` mode for some
cases, but not others, you're encouraged to flag `strict=True` on the
decorated class/callable, or even make use of the `typic.Strict` 
annotation to flag `strict` mode on individual fields.











Namespaced Strict Mode

Namespaced enforces on a per-class/per-callable basis:

>>> import typic
>>>
>>> @typic.al(strict=True)
... def add(*num: int) -> int:
...     return sum(num)
...
>>> add(1, "2")
Traceback (most recent call last):
    ...
typic.constraints.error.ConstraintValueError: Given value <'2'> fails constraints: (type=int, nullable=False, coerce=False)







Annotated Strict Mode

Annotated Strict Mode is enforced at the type-hint level.

??? example “Annotated Strict Mode”

```python
import typic


@typic.klass
class Foo:
    bar: typic.StrictStrT  # convenience alias for most common need.
    blah: int  # will be coerced if possible.


Foo(None, 2)
#> Traceback (most recent call last):
#>     ...
#> typic.constraints.error.ConstraintValueError: Given value <None> fails constraints: (type=str, nullable=False, coerce=False)
```





!!! warning “”

There are cases where the returned value is still coerced, so if you
are listening for the result of a call to `typic.transmute` while
enforcing strict-mode, you should be sure to track the updated value.








On Validation & Deserialization

Validation is a bloated term in Python typing. There are many
camps which define validation as different things - static type
checking, runtime type checking, runtime type coercion…

Unlike other popular libraries, Typical makes an extremely clear
delineation between type deserialization and type validation.

We approach type-enforcement via deserialization-first. While you
may get validation as a side-effect of coercion, the line between the
two operations is not blurred. In order to operate with
validation-first, you must change the mode of operation. This is not
the case in other popular libraries.

These are the paths to “validation” which Typical will follow:


Validate-by-Parse

The given value is inherently validated by the action of
conversion. This is Typical’s default mode of operation:

>>> import ipaddress
>>> import typic
>>>
>>> typic.transmute(ipaddress.IPv4Address, "")
Traceback (most recent call last):
    ...
ipaddress.AddressValueError: Address cannot be empty
>>> typic.transmute(typic.URL, "")
Traceback (most recent call last):
    ...
typic.types.url.NetworkAddressValueError: '' is not a valid network address.







Parse-then-Validate

The given value will be transmuted and then validated against any
additional constraints. This can be activated for primitive types by
defining constrained subclasses:

>>> import typic
>>> @typic.constrained(gt=0)
... class PositiveInt(int): ...
...
>>> typic.transmute(PositiveInt, "1")
1
>>> typic.transmute(PositiveInt, "-1")
Traceback (most recent call last):
    ...
typic.constraints.error.ConstraintValueError: Given value <-1> fails constraints: (type=int, nullable=False, coerce=False, gt=0)







Validate-Only

The given value must meet the type-constraints provided. This can be
done by signaling to Typical to use “strict-mode” when resolving an
annotation for coercion.

In strict-mode, validation-only is used for primitive
types and builtin higher-level types:

>>> import datetime
>>> import ipaddress
>>> import typic
>>> typic.transmute(typic.Strict[int], "1")
Traceback (most recent call last):
    ...
typic.constraints.error.ConstraintValueError: Given value <'1'> fails constraints: (type=int, nullable=False, coerce=False)
>>> typic.transmute(typic.Strict[ipaddress.IPv4Address], "")
Traceback (most recent call last):
    ...
typic.constraints.error.ConstraintValueError: Given value <''> fails constraints: (type=IPv4Address, nullable=False)
>>> typic.transmute(typic.Strict[typic.URL], "")
Traceback (most recent call last):
    ...
typic.constraints.error.ConstraintValueError: Given value <''> fails constraints: (type=URL, nullable=False)
>>> typic.transmute(typic.Strict[datetime.date], "")
Traceback (most recent call last):
    ...
typic.constraints.error.ConstraintValueError: Given value <''> fails constraints: (type=date, nullable=False)







Validate-then-Parse

The given value must meet the type-constraints provided - after
which we transmute the value. This can be done by signaling to
Typical to use “strict-mode” when resolving an annotation for
coercion.

In strict-mode, validate-then-parse is used for user-defined types.

>>> import dataclasses
>>> import typic
>>>
>>> @dataclasses.dataclass
... class Foo:
...     bar: str
...
>>> typic.transmute(typic.Strict[Foo], {"bar": "bar"})
Foo(bar='bar')
>>> typic.transmute(typic.Strict[Foo], {"bar": 1})
Traceback (most recent call last):
    ...
typic.constraints.error.ConstraintValueError: Foo.bar: value <1> fails constraints: (type=str, nullable=False, coerce=False)





!!! tip “”

All of the above examples use `typic.transmute(...)` and wrap the annotation in
`typic.Strict[...]`, however, users may call `typic.validate(...)` directly to
access Typical's runtime validation engine.








What “Mode” Should I Use?

Typical provides users with a path for easy, safe conversion of
types at runtime.

The best use-case for “strict-mode” is when you find yourself using
str as your annotation. This is because any object in Python can be
a string, so you could end up in a weird place if you’re blindly
casting all of your inputs to str.

To this, Typical provides a StrictStrT annotation for public
consumption that will enforce strict type-checking for string fields.





          

      

      

    

  _static/comment-bright.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/up-pressed.png





_static/up.png





_static/plus.png





